
Automatic Classification vs Ground Truth

A comparison is made for each array between its classification from

ground truth and its classification from the automatic classifier . A confusion

matrix is constructed which lists the number of ground truth target arrays

which are automatically classified as target arrays and background arrays.

This is also done for the ground truth background arrays. From this matrix

the probability of target detection and the probability of a false alarm can

be calculated .
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3.0 RESULTS OF AUTOMATIC CLASSIFICATION

SA~ imagery taken from Gallant Hand and Reforger data was first processed

to obtain a set of change images, each containing military targets. The pro-

cessing was done with CUC comp’iter programs which sinxilate the ~~dular Change

Detecto r (MCD) processing required to create a difference image. Figures 3-1

through 3-9 show the results of this processing. In each case, except Figure

3-1 , the reference , mission, warped mission, and difference images are pre-

sented . The target changes are shown as white in Figure 3-1 and black on the

othe r images.

The next stage of the processing is performed on each difference image

separately. First , a pixel intensity threshold is imposed on the difference

image to create mission change events. Then an event size threshold is imposed

so that only “large” events remain. The intensity and size thresholds are

determined either by the user (supervised thresholding) or automatically

(adaptive thresho lding). At this point the change data :orrespond to the MCI)

output.

The resulting change event images are presented in Figures 3-9 throigh

3-17 (events are white). The caption of each image includes the thresholding

procedure and values used. The target clusters are indicated by white hand-

drawn boundaries. The other events a-re those changes which have passed the

change criteria at this point in the processing. These can be either valid

but non-interesting changes, or false changes induced by signal noise, scintil—

fatio.n, etc. The ground truth [s not adequate to discriminate these background
categories.

Next, the events in each image are clustered into arrays using either

Iterative Clustering or Minimal Spanning Tree Clustering, which are described
in Section 2.0. The captions of Figures 3-9 through 3-17 indicate the

clustering method used.

The next stage of the processing (Figure 2-5) involves the use of event

ground truth to establish array ground truth. Those arrays composed of nr re

than 527. target events (labeled tro~o ground truth) are labeled target arrays

3-1 
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Figure 3-1. Gal lant Hand (Gun Emplacements) Difference Image.
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Figure 3-2. Reforger Region A (Helicopters).
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Figure 3-3. Reforger Region B (Hawk Site). L

3 4

~
-I- 

~~~~~~~~~~~~ — —— — - —  - ---- — - —  - _________

~~ 
-
~~

--:~ ~~~~~~~~~~~~~~~~ - 
-1~~.~~



I 
~~~~ 

- - -.

I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

/
S

z
0 -
H

- .(a 
~z4H

0
U

-iI - ;.~ 
C-,

0
~-1
00
a)

‘.1
a,
00
‘.4
0

14.4

I w
I

I
cn
a)
~.4

00
“4

0 CL,

00
C.) 

Ca
H

00

3-5



REFERENCE MISSION

E U

•
WARPED MISSION DIFFERENCE

Figure 1-5 . Re forger Region D (Hawk Site).
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FI gu re 3-6. Re forger Region F (Helicopters).
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Fi gure 1-1. Reforger Reg ion C (Armor ) .
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Fi gu re 3-8. Reforger Region N (Tanks).
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Whe n a solu t ion is reached in which all clusters are of satisfac tory

size , and the number of clusters in the solution is reached through an

orderly process, a stability test is performed . In this situation iterat ions

are performed wh ich permit events to move freely from one c luster to another;

no new c lus te r s  are created and no old ones are destroyed. This is accom-

plished by assigning each event to the max imum likelihood cluster and by

refusing to destroy a cluster by reassigning the cluster nucleus (The event

nearest the cluster centroid ; these are determined for each cluster before

the stability test begins). Iterations continue until no reassignments are

needed or until it is apparent that the reassignments are due to oscillation

of two or more events between two or more clusters. In either event the

sys t em is t hen jud ged to be in a relaxed state.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ _ _ _



A P P E N D I X  B

F E A T U R E S  F O R  D E S C R I B I N G  A R R A Y S

After the clusters have been isolated , that is, individual events have

been grouped in an array, characteristics about these arrays can be used to

identify targets. The most obvious characteristics or features are size

and intens i ty of individua l events and combinations of size and intensity

• f events  in an array . A proposed set of features is described which will

be used in the multi—variate group—separating procedures. The features

describe the geometric properties of a group of change events in an array.

Subroutines to perform the computations necessary to transform binary

data describing an array of change events into the set of twenty features are

on hand. The following measurements are accumulated for each array.

= Number of pixels in event j

r . = Centroid of event j
.1

C~ Covariance of event j about the event cantroid

N = Number of events in the array

R Geometri c centroid of the arr ay
C = Geometric covariance of the array

R — Mass centroid of the array

C Mass covariance of the array

The quantitative definitions of these measurements are given below.

= image coordinate vector to pixel i of event j

(x~

b~ — set of all  pixels In event j

B— i
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(x~
j N~ b~

R~ matrix of pixel vectors in event j

= (;
jj 

-
~~~~~~~

‘ ~2j~~~’j’ 
•• •‘  rN j

.r
j
)

C. = .L. T
j  N~ R~R~

~~~~~ ~~~~~~

R = matrix of event centroids about the array centroid

= 
~
“I - R, r2 

— R, ... , rN —

_ l RTC~~~~ R

N 
~ N 

r)

~~ 
N~

j I

RH 
= matrix of event centroids about the mass centroid

(t

~
1 

— RM, r2 — 

~1, •••
~~ 

—

CM~~~~ RH ’~M
T

Define three diagonalizing transformations as follows:

B-2
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(x 1~ o 
1’I I = ii Cii .

— (H1~~H2~)

~~~

(A 
o~~ 

U C U T

A~J
U = (tJ~~, U2

)

U i ( u~1
Ut2

(r~ ) M C ~~M~

M = (M 1, H2)

(M~ 1
Mi 

= 

~~~i2

• The eigenva lues of the three covariance matrices are found on the diagonals

of the l e ft hind side and the elgen vectors which define the three principa l

• d i rect ions are:

8-3
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(h11 ~~ (U11

\~~h12 ~J

(M11
and H

1 
=

Def ine  the distance from event i to i ts nearest neighbor as

d .  = MinI(rj -

A set of twenty features which characterize the array is computed from

these measurements. The description is based on the size, shape, arrangement,
orientation and uniformity of events in the array. It Is also based on the

array size and shape and on the mass size, shape and displacement. The

following features are used.

1. Array Size

Feature 1 = tog~0 N

2. Spacing of Events

This is the only feature which requires a search of the data.

N

— lv ’ -4
Define d m L~ 1d 11

i l

Feature 2 log10 (~
)

3. Regularity of Spacing

Feature 3 E (d1 
-

V - -- —~~~~~~~~ - - — -~ - —-- - 
- V -



4. Event  size

N

I ) e f ine  N A 1.

Feature 4 = log 10 
( J~

)

5. U n i f o r m i ty of Event Size
1/4

Feature 5 = (A 1. - XI))

6. Event Shape

Feature  6 = where 
~

7. Uniformity of Event Shape

Feature 7 = J~ ~~ 
r) 2

8. Uniformity of Event Orientation

V 

Feature 8 = - 
~~lj

where (h11, h12)~
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~ 
(h2

11 + h212)~

L_ 
_ _V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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and

= (h11, 
~
‘I2~j

is a unit vector in the principal direction of event j.

9. Array Size

Feature 9 = log10~~~~
_! 

)
where A 1 is the f i r s t  eigenvalue of the array us ing the array centroid.

10. Array Shape

Featu re 10 = jA2/A
1~

1].. Orientation of Events to Array

Feature 11 = ~~ ~~~~~ [1 — (U 1.}I1~~)
2 )

12. Event Area

Define~~~~ ~

Feature 12 — log10 
(N)

13. Uniformity of Event Area

Feature 13 
/~~ 

~~~~~ [1og 10(N~) - 1og10(W) 
~2

3-6
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14. Array Mass Size

Feature 14 = log 1~~~~~~Iog10 

~~~~
where is the f i rs t  eigenvalue.

15. Array Mass Shape

Featu re 15

16. Orienta t ion  of Array Mass to Array

I~eatu re 16 = 
Ji 

-

17. Distance from Mass to Geometric Centroids

Feature 17 = 1og 10(j R — RHI

18. Array Pixel Density

Feature 18 = - log 10 —

(1 ÷J~~)(l +

19. Event Pixel Density

N .
Def ine  P = _________________________

• (1 + ~/A 1~
)(1 ÷ ./X2~)

Feature 19 = — P~

8-7 1 :,:
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20. Uniformity of Event Pixel Density

Feature 20 = (P~ -
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A P P E N D i X  C
V 

C L A S S -  S E  P A R A T  I N C  T R A N S F O R M A T I O N

The f o l l o wing discussion develops the “optimum” linear transformation W

of the array vectors in feature space which both clusters arrays of the same

cla ss and separates arrays that belong to different classes. The measure of

clu stering or separation between two arrays is the Euclidean distance between

th e arrays after their linear transformation to the new feature space.

The effect of such a transformation is illustrated in Figure C-l , where

l ike arrays of each class have been clustered and the two clusters have been

separated from each other .

w

Figure C-I. Separation of Classes after the Linear
Transformation W to New Feature Space.

One transformation that accomplishes the stated objective can be spec i-

fied as follows: Find the linear transformation W that maximizes , af ter
t ransformation , the mean-square distance between points that belong to differ-

ent classes (the mean-square interset distance) subject to the constraint that

th e mean-square distance between the points of one class (the mean-square

intrasct distance of the class) is held constant after transformation .

The particular linear transformation W that maximizes atter trans-

formation the mean-square interact distance while holding the mean-square

intrasel distance of one class constant after transformation is developed

below . The purpose of the transformation is to separate arrays of different

classes while clustering those that belong to the same class.

C-’



The l inear transformation W maps the N-dimensional feature vector f into

-~~ -~~= W f (C.l)

p ~ 
w
11 w

12 ...

V21 w~2 ... V21~

= . . . . .  • : (C .2 )

N 
WNI WN2 ::: W

NN

so that  f . ’ = w .. f
1 

(C. 3)

The mean-square dist ance between the H members of the set [1 J and

Lh e H2 members of the set (
~ }, a f te r  the l inear transformation , i8 given by

Equa t ion  C . 4 , whe r e f and g are , respectively, the s components of the
th th me ps _i

m and p arrays of the sets [ f )  and {g ). For notational simp l i c i ty ,
this mean-square interset distance is denoted by S([t ), [~~)) and is the
quantity to be maximized by a suitable choice of the linear transformation

W. The choice of the notation above is intended to signify that the trans-

formation to be found is a function of the two sets.

M
1 

H
2

S ( 1 f j ,  
~g }) 

= jj-~
-- ~‘ ~~~~~~ (tm ’-

~~p
’)  • (

~~~‘ -~~~‘)  (C.4a )
m=l p— I

= M 1M 2 
~~~ ( f I ~~~~~

_
~~~

I

p
~~~)

2 
(C.4b)

rn—i p—i n—i

H
1 

M
2 

N rN 12
= M 1M 2 ~~~ t~~~~

wns (f
ms

••gps)I (C.4c)

r n 1  p n—i s—l
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The constraint that the mean-square distance e between the points of one
set , say (f }, is a constant is expressed by Equation C.5.

M H
_& _& -~

B = (M I)M ‘-f ‘) (f I -f  ~) (C .5a)
m p in p

m 1  p l

M1 N1 
N

— 

l)M ~ ~~~ 
(f’ _ f I  )2 (C.5b)

1 uPi p l n l  ~~~~ ~~~

M1 
N
1 

N r N 2

— 

I )M E ~~ 
l ~~~ w (f f ) (C 5c)

I r n 1  p=i n 1  L8=1 ne ms

= K, a constant

Both equations C.5 and C.4 can be simplified by expanding the squares

as double sums and interchanging the order of summations. Thus

N N N

S([?~~, [ ) )  — 
~~~ 

w w x (C .6a)L.....4 ns nr ar
n=1 s—i r=l

where
M1 N2

Ix = x = — E (f -g )(f -g (C.6b)
sr rs M1N2 

ma pa mr pr)
m=l p l

and

N N N

- E ‘S w w t - K (C .7a )
ns nr ar

n 1  s—I r 1

C—3



where
N1 N1

tsr 
= t

rs 
= 
(M -1)M ~ ~~~~~~~~~~~~~~~~ 

(C .7b)

The coefficient x is the general element of the matrix X which is of
sr

the form of a moment matrix and arises from considerations of cross-set

distances. The matrix T with general coefficient t arises from consider-

ations involving distances between the points of only one set , the set [f~~.

Equation C.6 can be maximized , subject to the constraint of Equation C.7

by the method of Lagrange multipliers. Since dw 5 is arbitrary in Equation

C.8, Equation C.9 must be satisfied.

dS - Ade = dv 
~~~~~ 

W
nr
(Xsr - Atar) = 0 (C.8)

n—i s—i r—1

• E  W ( X  - A t )  — 0  n 1 , 2, ...,N; s—I , 2, ... , N (C.9)

r=1

Equation C.9 can be written in matrix notation to exhibit the solution

in an illuminating way. Let v be a row vector with N components (w
—~~ n n
w~~) ,  then Equation C.9 can be written as

~~ (X-XT) = 0

~
•
~~
“ (X-AT) = 0 (C.i0a)

~~~ (X-XT ) = 0

Multiplying both sides of the equation from the right by T ’, Equation

C.lob , which is of the form of an eigen value problem , is obtained.

C-4
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-~ -l
w1 (XT -XI) = 0

~~ 
(XT~~-~j) = 0 (C.lOb)

-~ -l
w
N

(XT -AI) O

• T
1 
exists since T is positive definite. Equations C.IOa and C.iob can be

satisfied in either of two ways. Either ~~
‘ (the row vector which is the

row of the linear transformation W given by Equation C.2) is identically

zero , or it is an eigenvector of the matrix XT. -l In order to find the

solution that maximizes S, a substitution in the mean-square interset distance

given by Equation C.6a must be made. Note first that through matrix notation ,

Equations C.6a and C.7a can be written as Equations C.ll and C.12.

N
—~S( [ f~~•}J~ p I) = V

n X w~ (C.11)

N
~~~~ ~~L~ 

w T W  = K  (C..l2)

n 1  -

But from Equation C.lOa , can always be replaced by X~~T . Thus

Equation C . l I  can be written as Equation C.13, where the constraint of
Equation C. 12 is used.

N
-~ -~~ T= A ~~ w~ T V

n 
— AK c.13

Thus the largest eigenvalue of (X-XT ) = 0 determines the transformation

that maximizes the mean-square interset distance , subject to the constraint

that  the mean-square intraset distance in the set is a constant. The

transformation is given by Equation C.14, where~~1 ~ (w 11, w12, ... , w~~)
is the eigenvector corresponding to the largest eigenvalue , X1, and the

other w~ of Equations C.1.Oa and C.lOb are identically zero.

- 

C-S ~~~~~~~~~~~~~~~~~~~~ 
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V
11 

W
12 . . . W

1N

O 0 . . . 0
w = (C.l4)

O 0 . . .  0

The transformation of this equation is singular , which expresses the

fact that the projection of a point in feature space onto the Line of

maximum mean-square interset distance and constant mean-square intraset

distance for set is the single most important feature determining class

membership. This is illustrated in Figure C-2 , where the line aa’ is in the

d irection of the eigenvector with the iargest elgenvalue of the matrix XT.
1

-I
The point p represents an array of unknown classification with known values

of Feature 1 and Feature 2. The point ’s projection onto l ine aa ’ is the
sing le best class-separating feature . The point u s  classified as class

[g} because the mean-square difference between its projection on line aa ’

and the projec tion of poin ts belonging to set [
~~

}, s(~ ,f ~~ }), is less than

S(~~,{? 1), the corresponding difference with members of set [? ) .

For the twenty feature problems considered in the contract , the three
best class-separating features (or projections) were used . This transfor-

mation is given by Equation C.15, vhere~~~ ~ (w 11, w12, . . . ,  wiN).

~ (wv, w22, . . . ,  w2N), and (w
3~~

, w32, . . .,  w3N) are the eigenvectors

corresponding to the three largest eigenvalues (X1, X2 , and A
3
), and where the

of Equations C.iOa and C.lOb are identically zero.

w12 . . • wlN\
1 w  w . . . w

w 2 1 22 2N I (c.l5)( V31 V32 • . • w3~

o o . . . o

O 0 . . . 0

Thus, for each array , the three beat generalized features ~~are calcu-

lated from the original twenty features i~using Equations C.i5 and C.l.

C-6
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_&
5(p,[f J )

Fea t L I r e  2 C l~1SS f m

/
S(p,[g J )

Cla ss g

Feature I

F igure C— 2 . Singular Class-Separating Transformation

Tn order to determine the transforu~~tion W in Equation C.15 , the eig~n-

vectors rand eigenvalues X of XT ’, as indicated in Equation C.lOb , must :

be o b t a i n e d . The e l emen t s  of the m a t r i c e s  X and T ~re given by Equations

C .ôb  and C.7b , respective ly. The following equations indicate how these

matrices can be expressed in terms of varteus moment matrices of the two

c las ses and ~~~

Froci Equation C.ob ,

H1 H
2

X sr = ‘1r s  = i~
j_

~~ ~~ ~~~~~~~ 

(f ,~ - g 5) ~~mr 
- 

~ p~ ) (C .l6 )

C-7
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Define

H
1 

H
2

= 
M~M~ ~~~ 

g~ ~ 
(C . 17)

H
2

~ =~~L~ V’ g (C.l8)
S M~ ~~~~~~~ 

PS
p=1

Rewrite the argument of Equation C.16 as

(f ~~5
_
~~p5 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (C.19)

Using Equations C.19 and C.l7, Equation C.l6 becomes

X = 
~ s~~s~~ ~~~r r ~~ ~~~~~~~ 

(C .20)

Xrs = ~~~~~~~~~~~~~~~~~~~~~~~~~~ (C.21)

-

The second term of Equation C.21 can be evaluated.

= 0 (C.22)

Since

E~~~~1= 
~~~~~ 

= 0 (C.23)

The same result is obtained for the third term of Equation C.21.

C-8



Thus Equa t ion  C . 2l becomes

Xsr =

_____________ 

(C .24)
+

Equation C.24 indicates that X is the sum of the covariance of class fsr
about the mean of class g and the covariance of class g about the mean of

class g. Using matrix notation , Equation C.24 can be written .

X = F(~ ) + G(~) (C.25)

where F(~~ is the twenty-feature covariance matrix of class f about the

t w e n t y - f e a t u r e  mean , ~~~, of class g,  and G(~~) is the covariance of class g

about the mean of class g. If , instead of Equation C.19, the following

s u b s t i t u t i o n  is made

~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (C.26)

Then Equation C.25 becomes

X = F ( f )  + G(f) (c.27)

The matrix T can be evaluated from Equation C.7b.

N 1 M 1
tsr = t rs = (M

1-i)M1 I~~~~~

’ 
ms ps~~~ mr~~ pr~ 

(C.28)

Rewrite the argument of Equation C.28 as

(i -f )(f -f ) = G f  -r ~-[f -F ~)([f -f ~-[f f]) (C.29)ms ps mr pr ms S a mr r pr r

4

t
I
.4

C— 9
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Using  E q u a t i o n s  C . 2 9  and C . 17 , Equat ion C .28  becomes

t = 

~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (C.30)

I 
s

_T
s j r

_T
r 1+ s s 1 r~~~r 1 

)

Using Equation C.23 , Equation C.30 becomes

tsr = (M
1
-l) 

2 
~~s~~~1tf r c 1  (C.3 1)

T = (M
1
-l) 

2 F (1) 
(C.32)

Thus , using Equations C.32 and C.27,

XT ’a [F(f) + G(f)) F
1( f)  (C.33)

= I + G(f) F ‘(1) (C.34)

Thus the eigenvectors rand eigenvaluesx of XT
1 can be obtained from

the eigenvectors and eigenvalues of G(f) F
1
(T5 . G(f) is the covariance

matrix in the twenty-feature space of the arrays of class g calculated

about the mean of the arrays of class 1. F ’( f )  is the inverse of the

covariance matrix of the arrays of class f calculated about the mean of

the arrays of class E.
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Throughout this section the class-separating transformations were developed

by reference to the existence of two sets, 
~~~ 

} and f~ 
} . The results

obtained by these methods are mure general, however, because they apply
directly to the separation of an arbitrary number of sets. For example, in

the maximization of the mean—square interset distance, there is no reason why

the matrix X should involve interset distances between only two sets. An

arb itrary number of sets may be involved, and the interset distances are

simply all those distances measured between two points not in the same set.

Similar arguments are valid for all the other matrices involved. The only

precaution that must be taken concerns the possible use of additional con-

straints specifying preferential or nonpreferential treatment of classes.

These additional constraints may require, for instance, that the mean square

intraset distance of all sets be equal or be related to each other by constants.

Aside from these minor considerations, the results apply to the separation of

any number of classes.

The eigenvectors of G(f) F~~(f) are needed to obtain the transformation

to the three best class-separating generalized features in the twenty—feature

space. The eigenvectors are obtained as follows.

Theorem: If G(f) and F(f) are symmetric, positive definite matrices,

then there exists a transformation W such that

(a) W I )  w
T 

= (C.35)

where I is the identity matrix;

(b) wc (1) wT = D (C.36)

where D is a diagonal matrix

V and

(c) W(C(1) F~~
( f ) ) W~~ D (C.37)

C-li



Since Equation C.37 is a similarity transform of the matrix GF
1
, D (which

is the same diagonal matrix as in (b)) has diagonal elements which are the

cigenvalues of GF
1 and the rows of W are the eigenvectors of GF

1
. W is

constructed as follows : Let H be the similar i ty transform for F.

H F ( f )  H’1 = (C.38)

where D1 
is the diagonal matrix with diagonal elements equal to the eigenvalues

of F. Since F is symmetric

-1 — 
T

H — H (c.39)

Thus

HF(f) 1~T = D1 (c.40)

Since the cigenvalues of F are positive definite ,

H F(f )  HTD1
_
~ = i (c.41)

App ly this same operator to G to define G,

D1
2 HC ( f )  HT D1~~ ~a) (C.42)

Let M be the similarity transform for ~ . (C.43)

Since C is symmetric

= MT (c.44)

Thus

MG(f) M
T 

= D 

C-12 

(c.45)
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where the elements of the diagonal matrix D are the eigenvalues of C • The

matrix W which has the properties given in Equations C.35, C.36, and C.37

is constructed as

-I-W = MD~ 
2 H (C.46)

To show tha t Equation C.35 is true,

WF(f) wT = 
~~l 

HF(f) u
T 

D1
½ M

T 
(C.47)

Using Equations C.41 and C.44

W F )  wT = I (C.48)

Thus Equation C.35 is true when W is given by Equation C.46.

To show that Equation C.36 is true,

WG(f )  wT = MD1
2 H G ( f )  HT D1~~ M

T 
(C.49)

Using Equations C.42 and C.43

WG(f) wT = D (C.5O)

Thus Equation C.36 is true when W is given by Equation C.46.

To show that Equation C.37 is true, multiply Equation C.35 and C.36

together .

wc(1) w
T 
~~~~ w

T 
= D (C.51)

From Equation C.35

F(f) w
T 

= (C.52)
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F ( f )  = W
_ l

(WT)~~ = (WTWY I (C.53)

F~~(f) = wTw (C.54)

Using Equation C.52 in Equation C.51,

w C ( f )  wT w = D (c.55)

Using Equation C.52 in Equation C.53,

W C ( f )  F 1 (T) w~~ = D (C.56)

Therefore Equation C.37 is true. Since Equation C.56 is a similarity

transform of the matrix GF
1
, the diagonal elements of D are the aigenvalues

of GF 1
, and the rows of W are the eigenvectors of GF

1. These eigenvectors

of are not orthonormal, since

wT ~ (C.57)

so that

~ i (C.58)

Equation C.57 is obtained from Equation C.46, C.44, and C.39, where

is the diagona l matrix with diagonal elements equal to the eigenvalues of F,

as given by Equation C.38.

in summary, W is the transformation matrix which maps a twenty-feature

vector of an array into the generalized feature space, the best three of which

will be used to classify the array. W , constructed as in Equation C.46, has

the properties given by Equations C.35, C.36, and C.37.
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The class—conditional probability densities for the arrays in the two
classes f and g are modeled as multi-variate normal distributions in the n—
dimensional feature space, with n = 20. For the class f, the probability
dens i ty of obtaining the twenty-feature measurement X is

P(X If) 
1 
n/2 ~

_ 1(i)I ½ exp [_½ (X_i)T F~~(f)(X-i)) (D.l)
(2ii)

is the inverse of the twenty—feature covariance matrix of the class f
about the twenty—feature mean, f, of class f. F(f) I is the determinant
of F(f). (X-f) is the twenty-feature measurement relative to the mean of
class f.

For the class g, the probability density of obtaining the twenty-feature
measurement X is

P(X~ g) = G
~~(~ )l 

½ 
exp [ _½ (X_~)

T G~ (~) (X— ~)) (D.2)
(2 IT)

The class—conditional probability densities in the best generalized

feature space are found as follows. Equation D.2 involves the quadratic

from

(X_f)T F~~ ( f )  (X-f) = ~T F 1
(?)y (D.3)

where y a (X-1) by definition. From Equation C.l the transform W takes a

featurL vector from the twenty-feature space to the generalized feature space.

y’ = WY (D.4)
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Thus

y = W~~y’ (u .5)

T 
= (y I )

T (W_1.
)
T (D.6)

The right side of Equation D.3 becomes

Y
TF

_l (1) y = (y I)T
(w

_ l
)TF

1
(?)w1y 1

I (D.7)
= (y L )

f
(wF(?)w

T
Y y’

Thus in the generalized feature space

F ( f )  = (wF(f )  WT)
_l 

(D.8)

in order tha t the quadratic forms in the generalized and twenty-feature spaces

are equal. Using Equation C.35

- ~~
_l
(?) = I (D.9)

so that

= 1 (D.lO)

Using Equations D .9 and D.8 in Equation D.7

Y
TF

_l
(i) y (~ t )T Iy ’ (D.ll)

Subst i tut ing for y 
-

(X_f)T F~~ (f)(X-f) = (X 1 _P)T I(X ’I’)
(D. 12)

= (X ’—f ’) (X ’—I’ )
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